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Linear Amplifier and Quasiprobability Distribution
Functions for the Squeezed Displaced Fock States

A.-S. F. Obada1 and G. M. Abd Al-Kader1
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The nondiagonal P-function (complex and positive) for the output field with the
squeezed coherent state as an initial state to a linear amplifier is obtained. Moments
of the field operators are calculated. The Wigner distribution function for the
output of a linear amplifier is discussed. The input light field of the linear amplifier
is assumed to be a squeezed displaced Fock state. Investigation of the Wigner
distribution functions at the output fields is carried out, where it is found that
the distribution spreads out as it rotates in the phase space with time development.
For the case of a squeezed displaced Fock state input it is found that the distribution
disintegrates into two subdistribution s. The phase distribution for the output light
is discussed through the phase function associated with the Wigner function for
different inputs.

1. INTRODUCTION

There have been vigorous investigations of the linear interaction of

atoms with an optical field (Matsuo, 1993; Hillery and Yu, 1992; Schleich

et al., 1992; Agarwal, 1987; Vaccaro and Pegg, 1994; Kim, 1995; Mollow

and Glauber, 1967; Carusotto, 1975; Rockower, et al., 1978). The linear light

amplifier, which consists of a large number of atoms, amplifies incoming
light fields and induces the spontaneous emission of photons. The quantum

statistical properties of the output, which should depend on the quantum

statistical properties of the input, have been investigated for coherent state

input (Mollow and Glauber, 1967; Carusotto, 1975; Rockower et al., 1978)

and for squeezed coherent input (Matsuo, 1993; Hillery and Yu, 1992).

The quasiprobabi lity distribution function is a c-number function, not
necessarily positive, that allows one to calculate the expectation values of a
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quantum system (Wigner, 1932; Hillery et al., 1984). Recently the quasiproba-

bility functions have become accessible to experimental measurement (Leon-

hardt and Paul, 1993, 1995) by means of the optical homodyne technique.
These measurement schemes have revealed a new facet of the s-parametrized

quasiprobability functions in the coherent state basis, namely that the s-
parametrized quasiprobability distribution function with fractional values of

s ( | s | , 1) is what is actually seen by the detectors. The value of the parameter

s as revealed by these experiments is directly related to the detector efficiency

and the amplification of the laser amplifier used in these schemes (Leonhardt
and Paul, 1993, 1995). In this language we look for an evolution equation

for the quasiprobability which in many cases bears a close anology to the

Fokker±Planck equation of classical statistics. A representation of the density

matrix with continuous indices is obtained by expanding on the basis of

either coherent (Glauber, 1963) or the squeezed states (Yuen, 1976; Kim et
al., 1989; WuÈ nsche, 1996). The most widely used representation of this kind
is the diagonal P-representation (Glauber, 1963). The resulting P-function

(Glauber, 1963) is nonanalytic, not positive definite in general, and therefore

cannot be interpreted as a probability density. An off-diagonal representation,

the R-representation, was also introduced (Glauber, 1963), but only little use

has been made of that tool. The off-diagonal P-representation is given by
Drummond and Gardiner (1980) and Gilchrist et al. (1997) for the coherent

state | a & basis and is generalized by WuÈ nsche (1996) and Obada and Abd

Al-Kader (n.d.) for the squeezed state | z, a & . In the latter case the density

operator r has the form

r 5 # # P( a , b , z) L ( a , b , z) d m ( a , b ) (1.1)

where P( a , b , z) is analogous to the P-function, and

L ( a , b , z) 5
| z, a & ^ z, b * |
^ z, b * | z, a &

(1.2)

and d m ( a , b ) 5 d 2 a d 2 b for the positive P-representation and d m ( a , b ) 5
d a d b for the complex P-representation.

The positive P-representation has the form (Obada and Abd Al-

Kader, n.d.)

P( a , b , z) 5
1

4 p 2 exp 1 2 1

4
| a 2 b * | 2 2 (1.3)

3 K z,
1

2
( a 1 b *) | r | z,

1

2
( a 1 b *) L
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The c-number function P( a , b , z) represents the statistical properties of the

density operator and is obviously real, positive, and normalized due to the

normalization of the density operator:

Tr( r (0)) 5 1 5 # P( a , b , z) d 2 a d 2 b (1.4)

The eigenvector of the creation operator a+ is constructed by contour integra-

tion from the d -function (Fan and Xiao, 1996). This motivated us to study
the complex P-representation with squeezed state basis. This representation

may find application to the excited two-photon coherent state of the radiation

field (Xin et al., 1996).

To find the phase distribution of a quantum state is a nontrivial task.

The reason for this is that Hermitian phase operators are rare (Carruthers

and Nieto, 1968; Barnett and Pegg, 1986). However, one approach that is
free of any such problems immediately offers itself: Express the Wigner

distribution function (WDF) of this state, which is ordinarily given in the

(dimensionless) variables coordinate x and momentum p, in polar coordinates,

radius r and angle u , and integrate over the radius (Tanas et al., 1992; Herzog

et al., 1993; Leonhardt and Jex, 1994; also see Special Issue, Physica Scripta,
T48, 1993). The resulting distribution PW ( u ) is periodic in the ª phase angleº

u and, for various examples of states, it satisfies all properties required by

a proper phase distribution.

The purpose of this article is to examine the statistical properties and

phase distribution in full generality, by using the squeezed displaced Fock

(SDF) state as an initial input field for the linear amplifier. The use of such
nonclassical states not only leads us to a deeper understanding of the nature

of light, but also is applicable to the detection of weak signals and quantum

communications. We shall consider this in terms of the WDF (Wigner, 1932;

Hillery et al., 1984). Due to the properties of the WDF, it always exists, though

it may become negative, and has remarkably simple transformation properties.

In Section 2 we briefly discuss the linear light amplifier and introduce
the Fokker±Planck equation and its steady-state complex P-function solution

in the squeezed-state basis. We also discuss the positive P-function for the

linear amplifier. In Section 3 we calculate the characteristic function (CF)

for a linear amplifier with SDF state input field and list several field moments.

In Section 4 we obtain the Wigner distribution on a linear amplifier with

SDF state as initial input field and we discuss important special cases. The
behavior of the WDF in three-dimensional diagrams is demonstrated as a

function of the interaction time in this section. In Section 5 we introduce the

phase distribution function by integrating the WDF over the radial variable,

and we also plot the Wigner phase distribution in two cases: squeezed and
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displaced Fock (number) states as input fields. Conclusions are drawn in

Section 6.

2. LINEAR AMPLIFIER

We briefly discuss an optical linear amplifier and its dynamics. We

assume that there exist NT two-level atoms concentrated in a very small

region of the space compared with the radiation wavelength, and that a single
mode of the electric field interacts with their dipole moments through the

atomic transitions. The field frequency is resonant with the atomic transition

frequency and the position-dependent variable of the field is eliminated.

Suppose that N1 of the atoms are in the lower state and N2 in the upper state

(NT 5 N1 1 N2). The system behaves as an amplifier if N1 , N2, and as a

field attenuator when N1 . N2. The density operator r of the field obeys the
following differential equation (Carusotto, 1975):

- r
- t

5 h N2(2a+ r a 2 aa+ r 2 r aa+)

1 h N1(2a r a+ 2 a+a r 2 r a+a) (2.1)

where a and a+ are the usual single-mode photon annihilation and creation

operators and h denotes the coupling constant between the atoms and the
field. The equation of motion (2.1) can be converted to the Fokker±Planck

equation with the appropriate initial field states (Obada and Abd Al-Kader,

n.d.; Louisell, 1973; Walls and Milburn, 1994). The statistical properties of

the linear amplifier are expressed in terms of the quasidistribution related to

the generalized P-function. In this section we are interested in the nondiagonal
P-representation with squeezed-state basis. From our results, however, the

corresponding formulas for the coherent-state basis can be derived in an

obvious way. Moreover, the Glauber (diagonal) P-function and Q-function

can be derived from the complex and positive P-repesentations, respectively.

We shall review the essential properties of the chosen states for the basis,

i.e., squeezed states.

2.1. Squeezed States

The squeezed state | z, b & can be found in Yuen (1976) and Kim et al.
(1989), from which we take a few necessary definitions and results. It is

defined by

| z, b & 5 D( b )S(z) | 0 & 5 S(z)D( b 0) | 0 & 5 S(z) | b 0 & (2.2)

with b 0 5 m b 1 n b *, where the displacement operator D( a ) and squeeze

operator S(z) are given by (Yuen, 1976; Kim et al., 1989)
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D( a ) 5 exp( a a+ 2 a *a) and S(z) 5 exp 1 z*2 a2 2
z

2
a 1 2 2 (2.3)

The operators D( a ), S(z) satisfy the transformations

D( a )aD+ ( a ) 5 a 2 a 5 A( a ), D( a )a+D+( a ) 5 a+ 2 a * 5 A+( a ) (2.4)

S(z)aS+(z) 5 m a 1 n a+ 5 b, S(z)a+ S+ (z) 5 m *a+ 1 n *a 5 b+ (2.5)

where z and z* are related to m and n by

m 5 cosh | z | , n 5 exp(i f ) sinh | z | , z 5 | z | exp(i f ) (2.6)

By applying the Bogoliubov transformation (2.5) and using some opera-

tor identities (Drummond and Gardiner, 1980 Gilchrist et al., 1997; Obada

and Abd Al-Kader, n.d.; Walls and Milburn, 1994), one finds that the projec-

tion operator (1.2) satisfies the operator identities

a L ( a , b , z) 5 H m * a 0 2 n 1 b 0 1
-

- a 0 2 J L ( a , b , z) (2.7a)

a+ L ( a , b , z) 5 H m 1 b 0 1
-

- a 0 2 2 n * a 0 J L ( a , b , z) (2.7b)

L ( a , b , z)a 5 H m * 1 a 0 1
-

- b 0 2 2 n b 0 J L ( a , b , z) (2.7c)

L ( a , b , z)a+ 5 H m b 0 2 n * 1 a 0 1
-

- b 0 2 J L ( a , b , z) (2.7d)

with the relation between b 0 and b given after (2.2) and a similar relation

a 0 5 m a 1 n a *.

The generalized Fokker±Planck equation may be obtained (Drummond
and Gardiner, 1980; Gilchrist et al., 1997) in the standard way for the complex

P-representation in the case of the linear amplifier. By using equations (2.7)

and (1.1) in (2.1), we get

- Pc( a , b , z, t)

- t
5 H - 2

- a 2
0

A 1
- 2

- a 0 - b 0

2h 1
- 2

- b 2
0

B

2
-

- a 0

h (N2 2 N1) a 0 2
-

- b 0

h (N2 2 N1) b 0 J Pc( a , b , t) (2.8)
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where

A 5 h m n (N2 1 N1), B 5 h m * n *(N2 1 N1)
(2.9)

h 5 h ( | m | 2N2 1 | n | 2N1)

The steady-state solution for the above equation has the form

Pc( a , b , z) 5 A1 exp F h (N1 2 N2)

2(AB 2 h2)
( 2 B a 2

0 1 2h a 0 b 0 2 A b 2
0) G (2.10)

where A1 is the normalization constant. We note the steady-state solution
found in the attenuator case only.

Equation (2.10) gives the complex P-function with squeezed-state basis

representation. The result when n 5 0, m 5 1 is the complex P-representation

for the coherent-state basis (Walls and Milburn, 1994). When we put m 5
1, n 5 0, and a 5 b * we have the Glauber±Sudarshan P-function for the

steady-state field, in the form

P( a , a *) 5
h (N1 2 N2)

p N2

exp F 2
h (N1 2 N2)

N2

| a | 2 G (2.11)

The steady-state solution to the Fokker±Planck equation in terms of the

diagonal P-representation does exist for some systems. The complex P-
representation, on the other hand, may take complex values, so that in no

sense can it have any probability distribution interpretation. However, it is

useful to give exact results for certain problems and physical observables

such as all the single correlation functions (Walls and Milburn, 1994). The

nondiagonal P-representations and their associated Fokker±Planck equations
have been used successfully to study properties of the linear amplifier. Finally,

we note that the Fokker±Planck equation (2.8) can be written in terms of the

quadratures of the field, i.e., a 5 x 1 iy and b 5 x 2 iy; this corresponds

to writing the field annihilation operator b, in the squeezed-state basis, as

b 5 b1 1 ib2. Using the resulting equation, one can calculate the variances

and covariance in the two quadratures b1 and b2. In this representation it is
easier to work with the operators b and b+ rather than a and a+.

2.2. Positive P-Representation (PPR) for the Linear Amplifier

In this section we briefly discuss the (PPR) given by (1.3) for the linear
amplifier. The solution of (2.1) may be found (Hillery and Yu, 1992; Schleich

et al., 1992) for a coherent state | a Â0 & as an initial input. In terms of Glauber±

Sudarshan diagonal P-representation (Hillery and Yu, 1992; Glauber, 1963;

Walls and Milburn, 1994) it has the form
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P( a Â, t) 5
1

p M(t)
exp F 2

| a Â2 G* a Â0 | 2

M(t) G (2.12)

with

G(t) 5 exp[(2k 2 1)NT h t 1 i v t] (2.13)

and

M(t) 5
k

2k 2 1
[ | G(t) | 2 2 1] (2.14)

where v is an angular frequency and k 5 N2 /NT , which may be called an

atomic population parameter. If all atoms are in the upper state, then k 5 1;

on the other hand, if k 5 0, then all atoms are in the lower state. Note that
M(t) is the average thermal photon number generated by spontaneous emission

processes of the atomic system.

We use this result, (2.12), to calculate the density operator with coherent

state basis. Substituting in (1.3), we have

P( a , b , z, t) 5
1

4 p 3M(t)
exp F 2

1

4
| a 2 b * | 2 G # H exp F 2

1

M(t)
| a Â2 G* a Â0 | 2 G J

3 Z K 1

2
( a 1 b *), z | a ÂL Z 2 d 2 a Â (2.15)

By performing the integration, we have

P( a , b , z, t) 5
1

4 p 2 m M(t) ! K1

3 exp F 2
1

4
| a 2 b * | 2 2 Z D2 Z

2

1
n *

2 m
D 2 1

n
2 m

D *2 2
| G* a Â0 | 2

M(t) G
3 exp H 1

K1 F 1 1 1
1

M(t) 2 Z 1m D 1
G* a Â0
M(t) Z

2

2
n *

2 m 1 1

m
D 1

G* a Â0
M(t) 2

2

G J
3 exp H 1

K1 F 2
n

2 m 1 1

m
D * 1

G a Â*0
M(t) 2

2

G J (2.16a)

where

K1 5 1 1 1
1

M(t) 2
2

2
| n | 2

| m | 2
(2.16b)
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and

D 5 m 1 a 1 b *

2 2 1 n 1 a 1 b *

2 2 * 5
1

2
( a 0 1 b *0 ) (2.16c)

Using the nondiagonal PPR, we can write the moments of the normally

ordered field operators b and b+ in the form

^ b 1 n
bm & 5 # a m b nP( a , b , z, t) d 2 a d 2 b (2.17)

The statistical properties of the output light in this case may be found by

using the PPR. An expression for ^ b 1 n
bm & has also been worked out, but it

is complicated and not very illuminating, so we omit it here.

When we take a 5 b * in (2.16), we obtain [1/N (t)] Q( a , z, t) for the
linear amplifier with squeezed coherent state basis (WuÈ nsche, 1996) and

coherent state initial input, with N (t) the normalization constant. The resulting

function P( a , a *, z, t) has the form

P( a , a *, z, t) 5
! K2

p
exp F 2

1

! K 2

{ g 1 | g 3 | 2 1 g 2 g *2
3 1 g *2 g 2

3} G
3 exp{ 2 g 1 | a 0 | 2 1 g 2 a 2

0 1 g *2 a *2
0 1 g 3 a 0 1 g *3 a *0 } (2.18)

where

g 1 5 1 2
1

K1 m 2 1 1 1
1

M(t) 2
g 2 5

n *

2 m 1 1 2
1

K1 m 2 2 (2.18a)

g 3 5
G(t) a Â*0

K1 m M(t) 1 1 1
1

M(t) 2 2
n *G*(t) a Â0
K1 m 2M(t)

K2 5 g 1 2 4 | g 2 | 2

with K1, G(t), and M(t) given by (2.16b), (2.13), and (2.14), respectively.

In Fig. 1 we plot the PPR function P( a , a *, z, t) of (2.18), which

represents the output of a linear amplifier driven by the coherent state | a Â0 &
as an initial input for a Â0 5 1. The coupling constant between the levels and
the field is h 5 0.2, the angular frequency is v 5 1, and the lower and upper

atom states satisfy N2 2 N1 5 1; then | G | 5 exp(0.2t). The squeeze parameter

in the basis state (squeezed coherent state) is | z | 5 1. The interaction time

t 5 n p /4, n 5 0, 1, . . . , 4, is chosen for illustration. This can be compared
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Fig. 1. Temporal behavior of (2.18) for the output of a linear amplifier initially in a coherent

state as an input state, with a Â0 5 1. The squeeze parameter for the basis state is | z | 5 1. The

amplifier parameters are v 5 1 and | G | 5 exp(0.2t). The interaction time t is shown.



2242 Obada and Abd Al-Kader

with the case studied in Matsuo (1993). The effect of squeezing in these

figures is obvious, in contrast to Matsuo (1993). We notice, however, that

as time develops, squeezing diminshes and the PPR spreads out in the phase
space. Similar to the coherent basis, we find that the height of the PPR

shrinks as the time t increases.

The P( a , a *, z, t) of (2.18), which defines the Q-function, may be

used to formulate the quantum statistical properties of the output light with

squeezed-state basis and coherent state as an input field. It is convenient for

evaluating antinormal ordered moments, e.g.,

^ bnb 1 m
& 5 # a n a *mP( a , a *, z, t) d 2 a (2.19)

where one finds that the antinormal moment has the form

^ bsb 1 l
& 5 o

min(s,l)

j 5 0 1 sj 2 (l)!

(l 2 j)! 1 g 1

K2 2
j

1 2 g *2

K2 2
(s 2 j)/2

1 2 g 2

K2 2
(l 2 j)/2

3 Hs 2 j F g 1 g *3 1 2 g *2 g 3

2 ! g *2 K2 G Hl 2 j F g 1 g 3 1 2 g 2 g *3

2 ! g 2K2 G (2.20)

with g i, i 5 1, 2, 3, and K2 given by (2.18a). The antinormally ordered

moments ^ bsb 1 l & give sufficient information about the state of the system.

The system described by (2.1) may be solved with the initial state as

squeezed displaced Fock (SDF) state, which is our concern in the next

sections.

3. THE CHARACTERISTIC FUNCTION (CF) OF A LINEAR
AMPLIFIER WITH SDF STATE INPUT FIELD

Cahill and Glauber (1969) defined a general representation function

W( a , s) which may be identified with the functions Q( a ), W( a ), and P( a )

when the order parameter s assumes the values 2 1, 0, and 1 1, respectively.
The s-ordered characteristic function C( b , s) is defined by

C( b ,s) 5 Tr[ r D( b , s)] 5 exp 1 s | b | 2

2 2 CW( b ) (3.1)

and

W( a , s) 5
1

p 2 # C( b , s) exp( b * a 2 b a *) d 2 b (3.2)
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The antinormal quasidistribution function Q( a ) is discussed for some special

cases of the SDF state in Kral (1990a, b), Moller et al. (1996), and Man’ ko

and WuÈ nsche (1997).
Here we introduce the Wigner CF for the linear amplifier with the

squeezed displaced Fock states as initial input field by using similar techniques

to those used in Matsuo (1993).

The solution of (2.1) in terms of a normally ordered CF is now written

as (Matsuo, 1993; Hillery and Yu, 1992; Schleich et al., 1992)

C o
N( l , t) 5 C in

N[G(t) l ]C th
N( l ) (3.3)

where C in
N( l ) is the normally ordered CF for a single-mode input light field

for the linear light amplifier, whereas C th
N( l ) is the normally ordered single-

mode thermal noise CF (Matsuo, 1993), C o
N( l , t) is the output solution, G(t)

is given by (2.13).

We choose the SDF state for an input field for the linear amplifier; these

states have been studied extensively (Kral, 1990a, b; Moller et al., 1996;
Man’ ko and WuÈ nsche, 1997) because of their interesting nonclassical proper-

ties and prospective applications in optical communication and interferome-

tery. The SDF state is defined by

| a Â0, z, m & 5 D( a Â0)S(z) | m & (3.4)

where S(z) and D( a Â0) are the squeeze and displacement operators given in
(2.3); here | m & is the number (Fock) state.

For a squeezed displaced Fock state defined by (3.2),

r 5 | a Â0, z, m & ^ a Â0, z, m | (3.5)

and after minor operator algebra we have the Wigner CF in the form

C in
W( l ) 5 exp F 2

| l 0 | 2

2
1 l 0( m a Â*0 1 n * a Â0)

2 l *0 ( m a Â0 1 n a Â*0 ) G Lm( | l 0 | 2) (3.6)

where l 0 5 m l 1 n l *, l 5 m * l 0 2 n l *0 , and L s
m(x) is the associated

Laguerre function given by (Gradshteyn and Ryzhik, 1980)

L s
m(x) 5 o

m

s 5 0 1 m 1 s
m 2 s 2 ( 2 1)s

s!
xs (3.7)
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Then the normally ordered CF is given by

C in
N( l ) 5 exp F | l | 2

2
2

| l 0 | 2

2
1 l 0( m a Â*0 1 n * a Â0)

2 l *0 ( m a Â0 1 n a Â*0 ) G Lm( | l 0 | 2) (3.8)

The normally ordered CF for the thermal state is written as (Matsuo, 1993;

Hillery and Yu, 1992; Schleich et al., 1992)

C th
N( l ) 5 exp[ 2 | l | 2M(t)] (3.9)

Introducing (3.8) and (3.9) in (3.3), we get the output normally ordered
CF in the form

C o
N( l , t) 5 exp H 2 [ | G(t) | 2 | n | 2 1 M(t)] | l | 2

2
1

2
m n *G2 l 2 2

1

2
n m G*2 l *2 1 G a Â*0 l 2 G* a Â0 l * J

3 Lm[ | m G l 1 n G* l * | 2] (3.10)

The Wigner CF of the output field is readily written in the form

C o
W( l , t) 5 exp F 2 1 12 | l | 2 2 G C o

N( l , t) (3.11)

We shall be using this CF to calculate the WDF in the next section.

3.1. Moments

From (3.8) we calculate the moments of the photon operators and the

field variables at the output of the linear amplifier. The average values of

the annihilation and creation operators satisfy the relation

^ a 1 s
al & 5

- s

- l s

- l

- ( 2 l *)l C o
N( l , t) | l 5 l * 5 0 (3.12)
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Below we discuss the average values of the normal product of the annihilation

and creation operators in some cases.

3.1.1. Squeezed State, i.e., m 5 0 in (3.10)

The expectation value (3.12) in this case becomes

^ a 1 s
al & 5 o

min(s,l)

j 5 0 1 s

j 2 (l)!

(l 2 j)!
(T2)

j( 2 T1)
(s 2 j)/2( 2 T*I )(l 2 j)/2

3 Hs 2 j F a Â*0

! 2 m n * G H l 2 j F a Â0
! 2 m n G (3.13a)

with

T1 5 2
1

2
m n *G2, T2 5 | G | 2 | n | 2 1 M(t) (3.13b)

where we have used the Leibniz formula for higher order differentiation and
the definition of

Hn(x) 5
d n

dt n exp[2xt 2 t2] | t 5 0 (3.14)

for the Hermite polynomials (Gradshteyn and Ryzhik, 1980).

A special case of (3.13) giving similar results may be found in Mat-

suo (1993).

Since the Glauber second-order coherence (correlation) function is
defined by (Walls and Milburn, 1994)

g(2) 5
^ a+a+aa &
^ a+a & 2 (3.15)

one can calculate g(2) from (3.13). This is the autocorrelation function of the

output light in the case of squeezed state as an initial state (Matsuo, 1993).

3.1.2. Squeezed Displaced Fock State

The expectation values for field operators can be obtained through the

appropriate differentiations with respect to l and l *, respectively, as in (3.12).

The average values for the first few members are

^ a & 5 G* a Â0, ^ a+ & 5 G a Â*0 (3.16)

^ a+a & 5 | G | 2{[(m 1 1) | n | 2 1 m | m | 2] 1 | a Â0 | 2} 1 M(t) (3.17)

and the normally ordered fourth moment of the photon operators is
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^ a+a+aa & 5 m(m 2 1){16 | T1 | 2 1 2B2
1} 1 m{16 | T1 | 2 1 4T *1 T 2

3 1 4T1T *3 B1

1 4T2 B1 1 4 | T3 | 2} 1 2T 2
2 1 4 | T1 | 2 1 2T *1 T 2

3

1 4T2 | T3 | 2 1 2T1T *2
3 1 | T 2

3 | 2 (3.18)

where

B1 5 | G | 2( | m | 2 1 | n | 2) (3.19)

and T1 and T2 are given by (3.13b), while T3 5 G a Â*0 . Substitution of (3.17)

and (3.18) into (3.15) yields the coherence function for the output light field

for an input light in the SDF state.

4. WIGNER DISTRIBUTION FUNCTIONS OF A LINEAR
AMPLIFIER WITH SDF STATE INPUT FIELD

In this section we obtain equations of the WDF for the output of the

linear amplifier with coherent-state basis. The WDF is defined as a Fourier

transformation of the Wigner CF of (3.2); then

W o
SDF ( b , t) 5

1

p 2 # H exp F 2 1 12 1 | G(t) | 2 | n | 2 1 M(t) 2 | l | 2

1 m n *G2 l 2 1 n m G*2 l *2 G
3 exp[ l *( b 2 G* a Â0) 2 l ( b * 2 G a Â*0 )] J
3 Lm[ | m G l 1 n G* l * | 2] d 2 l (4.1)

After performing the integration, we can write the Wigner function in the form

W o
SDP( b , t) 5

1

p | G | 2 ! k2

exp F 1

k2

( 2 n 1 | n 3 | 2 1 n 2 n *2
3 1 n *2 n 2

3) G
3 o

m

s 5 0
o
s

l 5 0 1 sl 2 1 ms 2 ( 2 1)s

(s 2 l)! 1 n 1

k2 2
l

1 ! 2
n *2

k2 2
s 2 l

1 ! 2
n 2

k2 2
s 2 l

3 Hs 2 l F ( 2 n 1 n *3 1 2 n *2 n 3)

2 ! ( 2 k2 n *2 ) G Hs 2 l F ( n 1 n 3 2 2 n 2 n *3 )

2 ! ( 2 k2 n 2) G (4.2)
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where

n 1 5 [1 1 2M(t)]
| m | 2 1 | n | 2

2 | G | 2
2 | n | 2 (4.3a)

n 2 5 [1 2 | G | 2 1 2M(t)]
m n *

2 | G | 2
(4.3b)

n 3 5 2
n *

G*
( b 2 G* a Â0) 2

m
G

( b * 2 G a Â*0 ) (4.3c)

and

k2 5 n 2
1 2 4 | n 2 | 2 (4.3d)

The formula (4.2) describes the temporal dependence of the WDF for the

linear amplifier when the initial input is an SDF state. In what follows we
discuss some special cases.

Case 1. Squeezed State Input. When m 5 0 we get the result of Matsuo

(1993) for the input state described by a squeezed state.

In Fig. 2 we demonstrate the three-dimensional time behavior of the
WDF for the output of the linear amplifier in the case of a squeezed coherent-

state input field. The amplifier and the initial field parameters are given as

follows: The displacement parameter a Â0 equals 1. The squeeze parameter z
is assumed unity, which implies that n 5 sinh(1), and f 5 0. The angular

frequency is unity, i.e., v 5 1. The atomic population parameter k 5 1 (i.e.,

all atoms are in the upper state) and the modified atom-field coupling constant
(2k 2 1)NT h has the value 0.2; then | G | 5 exp(0.2t). We have chosen the

interaction time t 5 n p /3, n 5 0, 1, 2, 3, for illustration. By observing the

plots, it is apparent that the maximum value of WDF is at position (0, 0) at

t 5 0. With increasing time the maximum value decreases and rotates in a

clockwise direction. It can be seen from the figures that the heights of

distributions shrink and spread out as the interaction time advances. The
spreading of the WDF over the b -plane is shown as time advances. The

diminishing of the amount of squeezing as time progresses is exhibited in

these figures. In Matsuo (1993) the same figures have been plotted using a

different way of computing the WDF (see Fig. 7 in that reference).

Case 2. Displaced Fock State Input. When n 5 0, m 5 1 we obtain the

output WDF for the displaced Fock (number) state (WuÈ nsche, 1991; De

Oliveira et al., 1990) as an initial state for the input field; in this case the

WDF reduces to
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W o
DF ( b , t) 5

2

p (1 1 2M(t))
exp F 2 2

| b 2 G* a Â0 | 2

1 1 2M(t) G o
m

s 5 0 1 ms 2
3 1 2 2 | G | 2

1 1 2M(t) 2
s

Ls2 | b 2 G* a Â0 | 2 (4.4)

From (4.4) when t 5 0 we get

W o
DF ( b , 0) 5

2

p
exp[ 2 2 | b 2 a Â0 | 2]( 2 1)mLm[4 | b 2 a Â0 | 2] (4.5)

as given in Cahill and Glauber (1969) and De Oliveira et al. (1990). We see

that there will be oscillations in this function, and negative values occur in

some regions.

In Figs. 3 and 4 we demonstrate the three-dimensional time behavior
of the WDF for the output of the linear amplifier in the case of a displaced

Fock-state input field. We illustrate two different cases: m 5 1 and a Â0 5 3

in Fig. 3, and m 5 2 and a Â0 5 3 in Fig. 4. The amplifier and the initial field

parameters assume the same values used in Fig. 1. We have chosen the

interaction time t 5 n p /3, n 5 0, 1, 2, 3, for illustration. In Fig. 3 when

m 5 1 the WDF has negative values inside the circle | b 2 G* a Â0 | 2 , [1 1
2M(t)]/2 centered at G* a Â0, but positive outside this circle. It can be seen

from the figures that the heights of the distributions shrink and spread out

as the interaction time advances. Note the negative values of the WDF and

consequently the nonclassical signature. However, this signature is decreasing

with increasing interaction time. The special cases of these figures when t 5
0 can be found in Tanas et al. (1992) and De Oliveira et al. (1990).

Finally, in Fig. 5 we demonstrate the temporal behavior of the WDF

for the output of the linear amplifier of the squeezed displaced Fock input

as given from (4.2). The amplifier parameters have the same values as in

Fig. 2 and the initial field parameters are m 5 1, a Â0, 5 3, n 5 sinh(1), and

f 5 0. We have chosen the interaction time t 5 n p /3, n 5 0, 1, 2, 3, for
illustration. It is seen clearly that as time develops the distribution breaks up

into two subdistributions for this case (see t 5 p ) and the nonclassical

signature is almost lost. The disintegration may be compared with a similar

behavior in the Q-function for dissipation in the damped harmonic oscillator

as discussed in Kral (1990a, b).

Fig. 2. (opposite) Three-dimensional time dependence of the Wigner distribution function for

the output of the linear amplifier driven by a squeezed state with a Â0 5 1 and squeeze parameter

| z | 5 1 and direction f 5 0. The amplifier parameters assume the same values as in Fig. 1.

Here X 5 Re( b ) and Y 5 Im( b ). The interaction time t 5 n p /3, n 5 0, 1, 2, 3, is chosen

for illustration.
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Generally it is seen that, for m 5 0, the WDF exhibits the standard

Gaussian distribution as shown in Matsuo (1993). For m 5 1 the WDF

deviates far away from the Gaussian distribution and becomes negative in
some regions of the b -plane. By comparing the plots in Fig. 3 with those in

Fig. 5 we can see the effect of the squeeze parameter on the output. We note

the spreading of the WDF over the b -plane with increasing time. It is clear

that the heights of the distributions shrink and their breadths increase as

the interaction time advances. The negativity of the WDF and hence the

nonclassical signature decrease with increasing interaction time.

5. PHASE DISTRIBUTION

The phase dependence of quantum noise in squeezed light has provided

the motivation for a reanalysis of the phase in quantum optics. Nonclassical
light fields are described in terms of quasiprobabi lities such as the Wigner

or Q (Husimi) functions, and the phase dependence of such distribution

functions is a useful parametrization of their properties (Tanas et al., 1992;

Herzog et al., 1993; Leonhardt and Jex, 1994; Lynch, 1995; Garraway and

Knight, 1992, 1993). It is well known that the Wigner phase distribution is

essentially identical to the Pegg±Barnett distribution if the field is dominated
by a narrow range of Fock states (Lynch, 1995; De Oliveira et al., 1990;

also see Special Issue, Physica Scripta, T48, 1993). Thus in our approach

here we deal with the Wigner phase distribution.

The Wigner phase distribution function is written simply as

PW( u ) 5 #
`

0

W( | b | , u ) | b | d | b | (5.1)

if the Wigner function is expressed in polar coordinates.

We discuss some special cases of the WDF obtained in (4.2).

5.1. Phase Distribution for Squeezed-State Input

When we choose the initial input field to be a squeezed state, i.e., m 5
0 in (4.2), we have the Wigner distribution function in the form

Fig. 3. (opposite) Three-dimensional time dependence of the W-function for the output of a

linear amplifier driven by a displaced Fock state with m 5 1 and a Â0 5 3. The amplifier

parameters have the same values as in Fig. 1. The interaction time t 5 n p /3, n 5 0, 1, 2, 3,

is chosen for illustration. Here X 5 Re( b ) and Y 5 Im( b ).
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W o
sq( b ) 5

1

p | G | 2 ! k2

exp H 1

k2 F A1 | a Â0 | 2 1 A2 a Â20 1 A3 a Â*2
0 G J

3 exp H 1

k2 F A1

| G | 2 | b | 2 1
A2

G*2
b 2 1

A3

G2 b *2 G J
3 exp H 1

k2 F 2 1 A1 a Â*0
G*

1
2A2 a Â0

G* 2 b 2 1 A1 a Â0
G

1
2A3 a Â*0

G 2 b * G J
(5.2a)

where k2, n 1, and n 2 are given by (4.3), b 5 | b | exp(i u ), and

A1 5 2 m n n 2 1 2 m * n * n *2 2 n 1( | m | 2 1 | n | 2) (5.2a)

A2 5 m 2 n 2 1 n *2 n *2 2 n 1 m n * (5.2b)

A3 5 n 2 n 2 1 m *2 n *2 2 n 1 n m * (5.2c)

By using (5.2) in (5.1) and using the integral form (Gradshteyn and Ryz-

hik, 1980)

#
`

0

x exp[ 2 ux2 2 2vx] dx

5
1

2u
2

v

u ! p
u

exp 1 v
2

u 2 F 1 2 Erf 1 v

! u 2 G (5.3)

with [ | arg v | , p /2, Re u . 0], we obtain the phase distribution function

PW
sq( u ) 5

1

p | G | 2 ! k2

exp H 1

k2

[A1 | a Â0 | 2 1 A2 a Â20 1 A3 a Â*2
0 ] J

3 H 1

2A
2

B

A ! p
A

exp 1 B
2

A 2 F 1 2 Erf 1 B

! A 2 G J (5.4)

Fig. 4. (opposite) Temporal behavior of the W-function for the output of a linear amplifier

driven by a displaced Fock state with m 5 2 and a Â0 5 3. The amplifier parameters have the

same values as in Fig. 1. The interaction time t 5 n p /6, n 5 0, 1, 2, 3, is chosen for illustration.

Here X 5 Re( b ) and Y 5 Im( b ).



2254 Obada and Abd Al-Kader



Squeezed Displaced Fock States 2255

where

A 5
2 1

k2 | G | 2
{A1 1 A2 exp[2i( u 1 v t)] 1 A3 exp[ 2 2i( u 1 v t)]} (5.4a)

B 5
1

2k2 | G |
{(A1 a *0 1 2A2 a Â0) exp[i( u 1 v t)]

1 (A1 a Â0 1 2A3 a Â*0 ) exp[ 2 i( u 1 v t)] (5.4b)

We note that when t 5 0 we get the phase distribution obtained from

the Wigner function of the squeezed state in Tanas et al. (1993).

In Fig. 6 we show the phase distribution PW
sq( u , t) as a function of

interaction time t. We take a Â0 5 1, n 5 sinh(1), f 5 0, | G | 5 exp(0.2t),
k 5 1, v 5 1, and the interaction time t 5 n p /6, n 5 0, 1, 2, . . . , 6. It is

seen that the phase distribution moves and broadens with the increase of

time. The bifurcation associated with the squeezed state is noted. A shift of

the peak toward 2 p is observed. The plots at t 5 0 can be found in Tanas

et al. (1993). The motion of the phase distribution function is related to the
rotation in the b -plane of the WDF in Fig. 2.

5.2. Phase Distribution for the Displaced Fock-State Input Light

When we choose the initial input as the displaced Fock state, i.e., n 5
0 and m 5 1 in (4.2), we have the WDF for the displaced Fock state in the form

W o
DF ( b , t) 5

E

p
exp{ 2 E | G* a Â0 | 2} o

m

s 5 0
o
s

l 5 0
o
s 2 l

v,vÂ5 0 1 ms 2 1 sl 2
3

E 2s2 l( 2 1)v 1 vÂ1 l( | G | )v 1 vÂ1 2s( | a Â0 | )v 1 vÂ

(s 2 l)!

3 exp[i(vÂ2 v)( u 2 u 0 1 v t)]

3 | b | F 2 2 exp[ 2 E | b | 2 1 EJ | b | ] (5.5a)

where

Fig. 5. (opposite) Temporal behavior of the W-function for the output of a linear amplifier

driven by a squeezed displaced Fock state with m 5 1, a Â0 5 1, | z | 5 1, and f 5 0. The

amplifier parameters have the same values as in Fig. 1. The interaction time t 5 n p /6, n 5 0,

1, 2, 3, is chosen for illustration. Here X 5 Re( b ) and Y 5 Im( b ).
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E 5
2

1 1 2M(t)
, F 5 2(s 2 l) 2 v 2 vÂ1 2

J 5
| a Â0 | ? | G |

2
cos( u 2 u 0 1 v t)), a Â0 5 | a Â0 | exp( u 0) (5.5b)

By inserting (5.5) in (5.1) and using the integral form

#
`

0

xu 2 1 exp( 2 vx2 2 g x) dx

5 (2v) 2 u/2 G (u) exp F g
8v G D 2 u 1 g

! 2v 2 (5.6)

where Dp(x) is the parabolic cylinder function (Gradshteyn and Ryzhik, 1980),

we obtain the phase distribution as

PW
DF ( u , t) 5

E

p
exp{ 2 E | G* a Â0 | 2} o

m

s 5 0
o
s

l 5 0
o
s 2 l

v,vÂ5 0 1 ms 2 1 sl 2
3

E 2s2 l( 2 1)v 1 vÂ1 l( | G | )v 1 vÂ1 2s( | a Â0 | )v 1 vÂ

(s 2 l)!

3 exp[i(vÂ2 v)( u 2 u 0 1 v t)]

3 (2E) 2 F/2 G (F) exp F J 2E

8 G D 2 F 1 JE

! 2E 2 (5.7)

Equation (5.7) may be written in terms of the error function Erf(x), which

is the result in Tanas et al. (1993).
Figure 7 shows the dependence of the phase distributions PW

DF ( u , t) of

(5.7) associated with the WDF on the interaction time t. We have m 5 1, a Â0
5 1, | G | 5 exp(0.2t), v 5 1. It is clear that the phase graph with two peaks

is moving and the peaks become broader with increasing time. The phase

information is becoming increasingly lost as time develops. The special case

of this plot at t 5 0 can be found in Tanas et al. (1992, 1993). The movement
of the PW

DF ( u , t) can be related to the rotation of the WDF in the b -plane as

shown in Fig. 3.

Fig. 6. (opposite) The phase distribution associated with the Wigner function for a linear

amplifier with squeezed state | a Â0, z & as an initial input field with a Â0 5 1, | z | 5 1, and f 5 0.

The amplifier parameters have the same values as in Fig. 1. Here the phase distribution PW
sq( u ,

t) is with t 5 n p /6, n 5 0, 1 . . . , 6. In this figure X represents u and Y represents | z | .
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Fig. 7. Temporal behavior of the phase distribution of the Wigner function for a linear amplifier

with displaced Fock state | a Â0, m & as an initial input field with m 5 1 and a Â0 5 1. The amplifier

parameters have the same values as in Fig. 1.

6. CONCLUSIONS

We have studied the Fokker±Planck equation of the linear amplifier

master equation using the nondiagonal P-representation with squeezed coher-

ent state basis. We have obtained the steady-state solution of the Fokker±

Planck equation using the complex P-representation. From it we obtained
the Glauber P-function in the steady state. We have shown that from the

time-dependent output P-function in the diagonal P-representation of a linear

amplifier we can construct the positive P-representation. The obtained positive

P-function characterizes the output of a linear amplifier with squeezed-state

basis an initial input for the field in coherent light. We have obtained the Q-

function for the output from the positive P-function when a 5 b *. Also, at
t 5 0 the usual Q-function of the squeezed state is retrieved. We have used

the squeezed-state basis to obtain the output nondiagonal P-representation

for the linear amplifier. The antinormal moments have been calculated. It is

hoped that the quasiprobabil ity functions with squeezed-state basis will find

applications in quantum measurements.

We have obtained the equation for the WDF of the output field for the
linear light amplifier with input squeezed displaced Fock (number) state as

an initial state of the field. Some of the inputs have been discussed as special

cases, namely squeezed and displaced Fock states. We demonstrated the

behavior of the WDF as a function of the interaction time for two special
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cases. We also showed the behavior of the WDF of the output for the linear

amplifier with squeezed displaced Fock (number) state input with time. The

resulting plots when t 5 0 can be compared with the results in De Oliveira
et al. (1990), Tanas et al. (1993), and Lu et al. (1989). Our present work

was motivated by the desire to realize physically certain specific quantum

states (SDF states; Kral, 1990a, b; Moller et al., 1996; Man’ ko and WuÈ nsche,

1997) and use them as input for the linear-insensitive amplifier as one of its

applications. It is hoped that the SDF states will find application in the

quantum nondemolition measurements and quantum optics. They may also
find applications in experimental situations that require low noise sensitivity.

The physical interpretation of the output of a linear amplifier with SDF states

as input differs from that for a squeezed input, as we have shown.

We have discussed the phase distribution produced by integrating the

Wigner function over the radius for the special cases above. The results for

the phase distributions are illustrated as a function of time. The results here
generalize various results reported earlier (Matsuo, 1993; Yuen, 1976; Kim

et al., 1989; WuÈ nsche, 1996; De Oliveira et al., 1990; Tanas et al., 1993; Lu

et al., 1989).
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